كتاب ميزان الحكمة/المقالة الأولى/الباب الأول



الباب الأول
منها في رؤوس مسائل من مراكز الأثقال


عن أبي سهل الكوهي وابن الهيثم البصري وهو معين الناظر فيه على تصور معانيه وهو تسعة فصول.


الفصل الأول


الأول الثقل هو القوة التي بها يتحرك الجسم الثقيل إلى مركز العالم والثاني الجسم الثقيل هو الذي يتحرك بقوة ذاتية أبداً إلى مركز العالم فقط أعني أن الثقيل هو الذي له قوة تحركه إلى نقطة المركز وفي الجهة أبداً التي فيها المركز ولا تحركه تلك القوة في جهة غير تلك الجهة وتلك القوة هي لذاته لا مكتسبة من خارج وغير مفارقة له مادام على غير المركز ومتحرّكاً بها أبدا ما لم يعقه عائق إلى أن يصير إلى مركز العالم


الفصل الثاني


الأول والأجسام الثقال مختلفة القوى، فمنها ما قوته وأعظم وهي الأجسام الكثيفة الثاني ومنها ما قوته أصغر وهي الأجسام السخيفة والثالث وكلما كان أشد كثافة كان أعظم قوة والرابع وكلما كان أشد سخافة كان أصغر قوة والخامس والأجسام المتساوية القوى هي المتساوية الكثافة والسخافة التي المقادير المتساوية منها المتشابهة الأشكال متساوية الثقل ولنسمّ هذه الأجسام المتساوية في القوة والسادس والأجسام المختلفة القوي هي التي ليست كذلك ولنسميها المختلفة القوى.


الفصل الثالث


الأول وإذا تحرك جسم ثقيل في أجسام رطبة فإن حركته فيها بحسب رطوبتها فتكون حركته في الجسم الأرطب أسرع الثاني وإذا تحرك في جسم رطب جسمان متساويا الحجم متشابها في الشكل مختلفا في الكثافة، فإن حركة الجسم الأكثف فيه تكون أسرع الثالث وإذا تحرك جسمان متساويا الحجم متساويان في القوة مختلفا الشكل فإن الذي يلقى الجسم الرطب منه سطح أصغر تكون حركته فيه أسرع، الرابع وإذا تحرك في جسم رطب جسمان متساويان في القوة مختالفا في الحجم فإن حركة الأعظم فيه ابطاء


الفصل الرابع


الأول الأجسام الثقال قد يتساوي أثقالها وإن كانت مختلفة في القوة مختلفة في الشكل الثاني ولأجسام المتساوية الثقل هي التي إذا تحركت في جسم واحد من الأجسام الرطبة من نقطة واحدة كانت حركتها متساوية أعني أنها تجوز في أزمنة متساوية مسافات متساوية ثالث والأجسام المختلفة الثقل هي التي إذا تحركت على هذه الصفة كانت حركتها مختلفة وأعظمها ثقلا أسرعها حركة الرابع والأجسام المتساوية في القوة والحجم والشكل والبعد عن مركز العالم متساوية الخامس وكل جسم ثقيل يكون على مركز العالم فإن مركز العالم يكون في وسطه ويكون ميل أجزائه مع جميع جهاته إلى مركز العالم ميلا متساويا ويكون كل السطوح التي تخرج من مركز العالم تقسم كل واحد منها الجسم بقسمين متعادلي الثقل عند ذلك السطح السادس وكل السطوح الذي يفصله ولا يمّر بمركز العالم يقسمه بقسمين غير متعادلي الثقل عند ذلك السطح السابع وكل جسم ثقيل فإن النقطة منه التي ينطبق على مركز العالم إذا كان ساكنا عليه يسمى مركز الثقل لذلك الجسم.


الفصل الخامس


الأول والجسمان المتعادلا الثقل عند نقطة مفروضة هما اللذان يمكن إذا اضمّا إلى جسم ثقيل تكون تلك النقطة مركز ثقله وصار مركزا ثقلهما عن جنبتي تلك النقطة على خط مستقيم يتمّ بتلك النقطة أن يتغير وضع ذلك الجسم وتصير تلك النقطة مركز ثقل مجموعهما الثاني والجسمان المتعادلان من الثقل عند سطح مفروض هما اللذان يمكن إذ اضمّا إلى جسم ثقيل يكون مركز ثقله على ذلك السطح أن لا يتغير وضع ذلك الجسم، ويكون مركز ثقل الجميع على ذلك السطح الثالث والأثقال المتعادلة لثقل واحد يعينه على مركز واحد فهي متساوية الرابع وإذا اضمّ إلى أثقال متعادلة عند ذلك المركز ولم يتغير مركز ثقلهما فإن الجميع متعادلة عند ذلك المركز الخامس وإذ اضمّ إلى أثقال متعادلة عند سطح مفروض أثقال متعادلة عند ذلك السطح فإن الجميع متعادلة عند ذلك السطح السادس وإذا نقص من أثقال متعادلة أثقال متعادلة فلم يتغير مركز ثقل الجميع فإن الباقية متعادلة السابع وكل جسم ثقيل يعادل جسما ثقيلا فإنه لا يعادل بجميع ثقله ولا بأكثر من ثقله جزء من ذلك الجسم ما لم يتغير وضع أحدهما الثامن والأجسام المتساوية في القوة المتساوية في العظم المتشابهة الأشكال التي أبعاد مراكز أثقالها من نقطة واحدة متساوية هي متعادلة الثقل بالإضافة إلى تلك النقطة ومتعادلة الثقل بالإضافة إلى السطح المستوى الذي يمّر بتلك النقطة ويكون وضع تلك الأجسام عنده وضعا متشابها التاسع وكل جسمين ثقيلين فمجموع ثقلهما أعظم من ثقل كل واحد منهما العاشر والأجسام الثقال المتساوية البعد عن مركز العالم هي التي تكون الخطوط التي تخرج من مركز العالم إلى مراكز أثقالها متساوية.


الفصل السادس


الأول كل جسم ثقيل يتحرك إلى مركز العالم فإنه لا يتجاوز المركز وأنه إذا إنتهى إليه إنتهت حركته الثاني وإذا انتهت حركته صار ميل جميع أجزائه إلى المركز ميلا متساويا الثالث وإذا إنتهت حركته فإن وضع المركز منه لا يتغير الرابع وإذا تحرك إلى المركز أجسام ثقال ولم يعقها عائق فإنها يلتقى عند المركز ويصير وضع المركز منها وضعا لا يتغير الخامس وكل جسم ثقيل فله مركز ثقل السادس وكل جسم ثقيل فإن كل سطح مستو يخرج من مركز ثقله فإنه يقسمه بقسمين متعادلي الثقل السابع وإذا قسمه بقسمين متعادلي الثقل فإن مركز ثقله على ذلك السطح الثامن وإن مركز ثقله هو نقطة واحدة.


الفصل السابع


الأول كل جسمين ثقيلين بينهما واصل بحفظ وضع أحدهما عند الآخر فلمجموعهما مركز ثقل وهو نقطة واحدة فقط الثاني كل جسمين ثقيلين يصل بينهما جسم ثقيل يكون مركز ثقله على الخط المستقيم الذي يصل بين مركزي ثقلهما فإن مركز ثقل الجميع على ذلك الخط الثالث كل جسم ثقيل يعادل جسماً ثقيلاً فإن كل جسم مساو له في الثقل فإنه يعادل ذلك الثقل إذا لم يتغير المراكز الرابع كل جسمين متعادلين يرفع أحدهما ويوضع على مركز ثقله جسم أثقل منه فإنه لا يعادل الجسم الثاني و لا يعادل إلا جسماً أثقل منه.


الفصل الثامن


الأول كل جسم متساوي السطوح متشابهة الأجزاء فإن مركز ثقله هو مركزه أعني النقطة التي تتقاطع عليها أقطاره الثاني كل جسمين متوازي السطوح متساويين في القوة وارتفاعهما متساويان وارتفاعهما على قواعدهما على زوايا قائمة فإن نسبة ثقل أحدهما إلى ثقل الآخر كنسبة عظم أحدهما إلى عظم الآخر الثالث كل جسم متوازي السطوح يفصله سطح على موازاة سطحين متقابلين من سطوحه فيقسمه بجسمين متوازي السطوح ويستخرج مركزاً الجسمين ويوصل بينهما بخطّ مستقيم ويستخرج مركز جميع الجسم، وهو أيضا على هذا الخط فإن نسبة ثقلي الجسمين أحدهما إلى الآخر كنسبة قسمي الخط أحدهما إلى الآخر بالتكافئ الرابع كل جسمين ثقيلين متصّلين فإن نسبة ثقل أحدهما إلى ثقل الآخر كنسبة قسمي الخط الذي عليه مراكز أثقالها الثلاث الذي لكل واحد منهما ولمجموعهما أحدهما إلى الآخر بالتكافئ.


الفصل التاسع


الأول كل جسمين متعادلي الثقل عند نقطة مفروضة فإن نسبة ثقل أحدهما إلى ثقل الآخر كنسبة قسمي الخط الذي يمر بتلك النقطة ويمر بمركزي ثقليهما أحدهما إلى الآخر الثاني كل جسمين ثقيلين يعادلان جسماً واحداً ثقيلاً بالقياس إلى نقطة واحدة فإن أقربهما من تلك النقطة أثقل من أبعدهما الثالث كل جسم ثقيل يعادل جسماً ثقيلاً بالقياس إلى نقطة ثم ينتقل الجسم في ضد الجهة التي فيها الجسم الآخر ويصير أيضا مركز ثقله على الخط المستقيم الذي عليه المراكز فإنه كلما بعد كان ثقله أعظم الرابع كل جسمين ثقيلين متساوين في والحجم القوة والشكل مختلفي البعد عن مركز العالم فإن أكثرهما بعد أعظمهما ثقلا تمت مسائل مراكز الأثقال.